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Some problems are treated in detail which are encountered during calculating the equilibrium
composition in heterogeneous reacting systems with respect to the minimum of the total Gibbs
free energy.

The calculation of the equilibrium composition in a mixture of ideal gases at con-
stant temperature and pressure by minimizing the total Gibbs free energy of the
system! had indicated a qualitatively new way to the solution of chemical equi-
libria. This method, originally developed only for an ideal gaseous phase, received
immediately a wide attention and several authors extended its applications also
to heterogeneous?~° and nonideal gaseous systems®. All of these methods are based
on the minimization of the Gibbs free energy by the method of Lagrange multipliers
with the use of computers.

The calculation methods outlined have not yet been applied to a wider extent
in calculations of reacting heterogeneous systems, which are being solved solely
by methods based on equilibrium constants” ~**,

In any application of the Gibbs phase law to calculations of the chemical com-
position of an arbitrary heterogeneous system, a careful analysis of the system
is necessary. Above all one must determine the number of independent components
from the total number of all reacting constituents present in the system, which then
determines the number of degrees of freedom in the system. The determination
of the number of independent components then also limits the number of phases
which can exist in the given system. In some practical applications this limitation
is solved by assuming that all condensed constituents form either one phase or an
ideal solution.

The calculation of the equilibrium composition in heterogeneous systems by the
White! resp. Boynton® method is based on the assumption that there can exist
only one solution at a given temperature and pressure. However, it appears that
the minimum of the total Gibbs free energy of the system investigated need not
correspond with the equilibrium state. The result of the solution, i.e., the minimum,
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can be either a local minimum corresponding to a metastable state or the absolute
minimum and then the solution actually corresponds to the thermodynamic equi-
librium'2. So far then, only such systems are being solved, which are composed
of the ideal gaseous phase'? and ideal solutions'*.

The calculation of any heterogeneous system requires a careful analysis of physical
states in which the components present should be considered. The solution proposed,
e.g., by Boynton® leads to calculations in which the components are considered
in different phases and the result with the lowest total Gibbs free energy is taken
as correct, It appears, however, that — with respect to the general definition of the
phase and to the dependence of the Gibbs free energy of a component in the system
on its mole fraction — this method is rather uncertain. Methods, which employ
Lagrange multipliers for minimizing the Gibbs free energy, are determined for
finding local extremes. It appears that some systems exhibit no such local extremes,
but that there is a system composition with a minimum of the total Gibbs free energy.

Let us consider a system at a constant temperature and pressure, containing N
components S,,S,, ..., Sy divided into h phases (N > I, h > 0). Each com-
ponent in this system can be expressed through the basic components Z, Z,, ..., Zy as

M
S, =Yaz;, i=12.,N.
j=1

The mass amount of the basic component Z; in the system is equal to b;. Thus, the
system is described by the basic components Z,, Z,, ..., Zy, numbers b, b,, ..., by
and the matrix

A=la;] i=12..N; j=12..,M. -

The basic components can be selected so that the rank of matrix A will be M. Let n;
denote the mass amount of component S; in the system, then the M folowing mass
balance conditions are satisfied in this system

N ) i
.Zlaijni =by, j=12, ., M. (1)

Without any loss of generality it can be assumed that the components S|,
Sz .00 SN, are in the first of the phases considered, the components Sy, + 1, Sn,+2, -+
..., Sy, are in the second phase, efc., and finally the components Sy, _, 41, Snp_y425 -+
..., Sy, are in the h-th phase (N, = N). The determination of the equilibrium com-
position in the system is equivalent to finding non-negative numbers ny, n,, ..., ny
which would minimize the total Gibbs free energy of the system, F(n, n,, ..., ny),
and satisfy conditions (/). The total Gibbs free energy of the system is /

N
F("1> Ny evns ”N) = Zfi("Nk_,;yu NNi—g+25 o+ o "Nk) »

i=

Collection Czechoslov. Chem. Commun, [Vol. 44] [1979]



Chemical and Phase Equilibrium Calculation 2295

where f; is the energy of the i-th component in the k-th phase

n;
Sy 10 Myt 2s oo ) = ni(ci + In 7) for n; >0
n

1 /G° — H}
(=L Ho) o L AHS), + 1, (n P~ 11:52609) ,
R T /i RT

values of —[(G® — HP)/T];, (AHY); are tabulated, f; = 1 for components in the
gaseous phase, 1; = 0 for components in other phases.

P is the total pressure in Pa and

k
nto= NN e B ez T iy

In view of the relation

. n;
limngln — =0,
;=0 n*

it is possible to set f; = 0 for n; = 0.

Consequently, in determining the equilibrium composition of a multicomponent
multiphase system at constant temperature and pressure we are searching for a con-
strained minimum of the function F with the variables ny, n,, ..., ny, which satisfy
M conditions (/). These conditions are independent; it means that M < N, otherwise
the rank of matrix A could not be equal to M. As long as M = N, the variables
ny, ny, ..., ny are determined unambiguously by conditions ().

Now let us examine conditions (/) in more detail. By using these conditions we can
express M variables through the other N — M variables; these M variables are
dependent, the others independent variables. Dependent variables cannot be chosen
as arbitrary M variables, but they must be selected in such a manner that the rank
of the matrix of coefficients a;; on the left-hand side of conditions (1), with inde-
pendent variables transferred to their right-hand side, be equal to M. Let n,, ng,_, ...

Lo n be the dependent and ng, ng,, ..., n independent variables, where
Sy, 52, ..., Sy is @ suitable permutation of numbers 1, 2, ..., N. By employing condi-
tions (/) we can express the dependent variables as linear functions of the inde-
pendent variables

SN-M+1 SN-M

M = LN(nsu Msgs ooy R N—M) ’
Mooy = Inca(es By v M) )
Psnomar = LN—M+1(”5|' Psgs ooy nsw—m) :
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Since the variables n,, n,, ..., ny must be non-negative, the set of N linear inequali-

ties with the variables n,,, ng,, ..., ng _,,

Li20, i=N,N—1,..,N—M+1:
n 20, @=s5,8,..5%NM
determines the definition region D of the function F(n,, ng, ..., ny,_,,), which is the

total Gibbs free energy of the system. The function F is obtained from the function
F(nl, n,, ..., ny), in which the dependent variables are replaced with the right-hand
sides of Egs (2).

The definition region D is a closed set, elements of set D are (N — M)-tuples
of mass amounts of the components S;,, S » Ssn-ne The function F is continuous
on D, inside D it has continuous partial derivatives of the first order; consequently,
F assumes on D its highest and lowest value. As regards the minimum of the function
F, there are two possibilities:

spr en

I. The minimum of F is a local extreme. In this case, the numbers ng,, n,, ..., By _\
which minimize the function F, are the solution to the set of the N — M equations

OFfon, =0, i=5,5,...5-Mm 3

and the remaining variables n, ny,_, ..., Hs_n., are determined from Egs (2).
The equations in set (3) are nonlinear and, before solving them, the dependent vari-
ables must be expressed through independent ones according to relations (2)."Set (3)
can be solved by a method of subsequent approximations and the first approximation
can be an arbitrary point of set D.

Anotber method for determination the equilibrium composition can be the
method! "** leading to a set of M + h linear equations, which is being solved
several times until a required accuracy of the solution has been reached. The first
approximation to the required solution must be selected in such a manner so that
the mass balance conditions (/) may be satisfied.

Example

A system with the basic components Z, = Cu, Z, = Cl, Z; = H, numbers b; = 2,
b, =2, by = 2, matrix A

-0 O -
=N OO

O O = =
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T = 800 K; P = 0-1 MPa. Each of the first two components forms an individual
solid phase, the latter two a gaseous phase. The mass balance equations

n +n, =2

ny +n,=2

It

2n3 + ny
can be used for expressing n,, n; and n, through n,

ny=2-ny,
ny =4in,,

ng=2—ny.

Thus, the total Gibbs free energy of the system is a function of one variable n,.

F(nl)=2(cz+c4)+nl<c, - —%—c4)+%lnﬁ+
- 1

+(2—n1)ln4—_ﬂ.
4 —n,

The definition region of F(n,) is the interval 0 < n; < 2. The dependence of the
function F on n, is illustrated in Fig. 1. The constants c,, ¢, c3 and c, were calculat-
ed from tabulated data®. It is obvious from this figure that F(n,) reaches a minimum
at n; ~ 0-7. In this case the Boynton method? gave n;, = 0-69923.

11. F assumes its lowest value at the boundary of set D. This situation will arise
with certainty if either F or F, which is identical, is a linear function. The function
F is linear if and only if each of the phases considered contains only one component,
i.e., h = N. A simple example is represented by a system containing one substance
in two or generally three phases.

Example

A system formed by one substance in three phases at constant temperature and pres-
sure is described by one basic component Z;, which is the substance considered.
The mass amount of this substance can be arbitrary, e.g., b, = 1, the matrix A

1
A=11
1
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The component S, is Z, in the gaseous phase, S, is Z, in the liquid phase and S,
is Z, in the solid phase. The mass balance condition is

ng4+ny,+ny=1. 4

The total Gibbs free energy of the system is

fx("1) + fz("z) + fs(”s)

nycy + Nacy + NiCy .

F("x, ny, "3)

Condition (4) can be employed for expressing, e.g., ny through n, and n,
ny=1-n;, —n,.
The function F is obtained by replacing ny in F
Fny,ny) = nye; — c3) + nyfcy — c3) + 5.

The inequality ny = 0, which is equivalent with the inequality 1 2 n, + n,, must be
satisfied. This inequality, together with the inequalities n; = 0, n, = 0, determines
the definition region D of the function F with variables n,, n,. The region D in vari-
ables n,, n, is given by the area bounded by the axes and the straight line n;, + n, =1.
The function F is linear on D and it is also linear on sections which form the boun-
dary of set D. For locating the minimum of the function F at the boundary of set D,
values of F at vertices of set D are of decisive importance. It holds .

F(1,0) =c¢,; F(0,1)=1¢,; F(0,0)=c;.
Values of the constants ¢y, ¢,, ¢c3 depend on the substance, temperature and pressure.

Let i, j, k be a suitable permutation of numbers 1, 2, 3. Three cases are now possible. *

Iy ¢, # ¢3¢y # €3, €3 # €35 ¢ = min(cy, ¢, ¢3). According to the above discussed

properties of the function F and to relation (#), the equilibrium composition is
given by

2) e =cp ¢ # ¢

ay ¢ < ¢
ng =1, ny = n; =0,
b) o < ¢
m=a n=1—-an=0

where a is an arbitrary number from the interval 0 < a < 1.
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3 e =cy =103
F is constant on D, which means that n,, n, is an arbitrary pair from set D, n; is
determined from (4).

Another case in which F reaches its minimum at the boundary of set D is a system
whose total Gibbs free energy has no local minimum, i.e., the case for which set
(3) or the set of equations in the method'*** possesses no solution in the set D. Thus,
in this case the minimum of F lies at the boundary of set D.

Example

A system with the basic components Z, = Ag, Z, = Cu, Z; = Cl, Z, = H and
numbers b, = 2, b, = 2, by = 4, b, = 4. The matrix is

[~ =
oo = O = O
QO = = -0 O
-0 o000

~188

Rl

=190

-192

SRS U
2

0 1 ™ 2

) ) 1 p

FiG. 1 FiG. 2
The Dependence of the Function F on n,(Cu) The Dependence of the Function F on n (Ag)
in the System 2 CuCl + H, at 800K and and n,(Cu) in the System 2 AgCl + 2 CuCl
0-1 MPa + 2 H; at 600 K and 0-1 MPa
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T = 600 K; P = 0-1 MPa. Each of the first four components forms an individual
solid phase, the last two components form a gaseous phase.

The mass balance conditions

ny + ny =
n, + ng =
ny + ng + ng

ns + 2ng =

PN NN

can be used to express ny, ng4, ns, ng through n, and n, as

ny =2—n,
ng=2-—n,
ns = ng + n,
ng =2 — y(n; + ny)
Consequently, the total Gibbs free energy of the system is a function of two variables
ny, nyp
F(ny, ny) = 2y + ¢4 + ¢5) + ny(e, — ¢3 + ¢5 — 4c6)
+ ny(ey — ¢4 + ¢4 — deg) + (ny + ny)In(ny + ny)
+[2 = ¥(n, + n)]In[2 = 4(ny + ny)]
—[2+ 4(ny + ny)]In[2 + 3(n, + ny)].
The definition region of the function F(n,, n,)is the square 0 < n; £2,0 S n, £2
in the ny, n, coordinate plane. The dependence of the function F in n, is illustrated
in Fig. 2 for several values of n,. The constants ¢y, ¢,. ..., ¢s were calculated from

tabulated data’®>'®. It is obvious from this figure that F(n,, n,) reaches its minimun
at n, = 2, n, = 0. Thus, the equilibrium composition is:

ng=2, ny=0, ny=0, ng=2, ns=2, ng=1.
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