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Some problems are treated in detail which are encountered during calculating the equilibrium 
composition in heterogeneous reacting systems with respect to the minimum of the total Gibbs 
free energy. 

The calculation of the equilibrium composition in a mixture of ideal gases at con­
stant temperature and pressure by minimizing the total Gibbs free energy of the 
system 1 had indicated a qualitatively new way to the solution of chemical equi­
libria. This method, originally developed only for an ideal gaseous phase, received 
immediately a wide attention and several authors extended its applications also 
to heterogeneous2 

- 5 and nonideal gaseous systems6
. All of these methods are based 

on the minimization of the Gibbs free energy by the method of Lagrange multipliers 
with the use of computers. 

The calculation methods outlined have not yet been applied to a wider extent 
in calculations of reacting heterogeneous systems, which are being solved solely 
by methods based on equilibrium constants 7 

-11 . 

In any application of the Gibbs phase law to calculations of the chemical com­
position of an arbitrary heterogeneous system, a careful analysis of the system 
is necessary. Above all one must determine the number of independent components 
from the total number of all reacting constituents present in the system, which then 
determines the number of degrees of freedom in the system. The determination 
of the number of independent components then also limits the number of phases 
which can exist in the given system. In some practical applications this limitation 
is solved by assuming that all condensed constituents form either one phase or an 
ideal solution. 

The calculation of the equilibrium composition in heterogeneous systems by the 
White 1 resp. Boynton3 method is based on the assumption that there can exist 
only one solution at a given temperature and pressure. However, it appears that 
the minimum of the total Gibbs free energy of the system investigated need not 
correspond with the equilibrium state. The result of the solution, i.e., the minimum, 
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can be either a local minimum corresponding to a metastable state or the absolute 
minimum and then the solution actually corresponds to the thermodynamic equi­
librium 12. So far then, only such systems are being solved, which are composed 
of the ideal gaseous phase l3 and ideal solutions l4

. 

The calculation of any heterogeneous system requires a careful analysis of physical 
states in which the components present should be considered. The solution proposed, 
e.g ., by Boynton 3 leads to calculations in which the components are considered 
in different phases and the result with the lowest total Gibbs free energy is taken 
as correct. It appears, however, that - with respect to the general definition of the 
phase and to the dependence of the Gibbs free energy of a component in the system 
on its mole fraction - this method is rather uncertain . Methods, which employ 
Lagrange multipliers for minimizing the Gibbs free energy, are determined for 
finding local extremes. It appears that some systems exhibit no such local extremes, 
but that there is a system composition with a minimum of the total Gibbs free energy. 

Let us consider a system at a constant temperature and pressure, containing N 
components SI' Sz, ... , SN divided into h phases (N) 1, h > 0). Each com­
ponent in this system can be expressed through the basic components Z I , ZZ, ... , ZM as 

M 

Si=IaijZj , i=1,2, ... ,N. 
j = 1 

The mass amount of the basic component Zj in the system is equal to bj • Thus, the 
system is described by the basic components Zl, Zz, ... , ZM, numbers b l ; bz, ... , bM 

and the matrix 

A = [au] i = 1,2, ... , N; I = 1, 2, ... , M . . ._..., 

The basic components can be selected so that the rank of matrix A will be M. Let nj 

denote the mass amount of component Si in the system, then the M folowing mass 
balance conditions are satisfied in this system 

N 

I aUni = bj , j = 1, 2, .. , M . 
i = I 

(1) 

Without any loss of generality it can be assumed that the components SI' 

Sz, . . . , SNI arein the first of the phases considered, the components SNI + 1> SNI + z, .. . 

... , SN2 are ill the second phase, etc.,and finally the components SNh_1 + I, SNh ~ 2+Z' .. . 

. . . , SNh are in the ll-th phase (Nh = N). The determination of the equilibrium com-
position ill the system is equivalent to finding non-negative numbers n I, nz, . .. , liN 

which would minimize the total Gibbs free energy of the system, F(nl' nz, .. . , liN)' 

and satisfy conditions (1). The total Gibbs free energy of the system is ' 

N 

F(IlI' liz, . .. , liN) = Ifi(nNk_,+l,nNk_.1+2, ... , IlNJ, 
, i=l I ' 
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where Ii is the energy of the ;-th component in the k-th phase 

1 (CO - H
O

) 1 ci = R -T--~ i + RT (~Hg)i + ti (In P - 11'52609), 

values of - [( CO - Hg)/TJ;, (~Hg)i are tabulated, t i = 1 for components in the 
gaseous phase, ti = 0 for components in other phases. 
P is the total pressure in Pa and 

In view of the relation 

lim n i In !!.~ = 0 , 
"1-+0 n 

it is possible to set Ii = 0 for n i = O. 

Consequently, in determining the equilibrium composition of a multicomponent 
multiphase system at constant temperature and pressure we are searching for a con­
strained minimum of the function F with the variables n l' n2' ... , nN, which satisfy 
M conditions (1). These conditions are independent; it means that M ~ N, otherwise 
the rank of matrix A could not be equal to M. As long as M = N, the variables 
n l , n2' ... , nN are determined unambiguously by conditions (1). 

Now let us examine conditions (1) in more detail. By using these conditions we can 
express M variables through the other N - M variables; these M variables are 
dependent, the others independent variables. Dependent variables cannot be chosen 
as arbitrary M variables, but they must be selected in such a manner that the rank 
of the matrix of coefficients au on the left-hand side of conditions (1), with inde­
pendent variables transferred to their right-hand side, be equal to M. Let nSN ' nS N _

1
' • • • 

.. . , nSN _ M + 1 be the dependent and ns" nS2'"'' n'N_M independent variables; where 
SI' S2' ••. , SN is a suitable permutation of numbers 1,2, ... , N. By employing condi­
tions (1) we can express the dependent variables as linear functions of the inde­
pendent variables 

(2) 
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Since the variables n1, n2 , ••• , nN must be non-negative, the set of N linear inequali­
ties with the variables nsl , nS2 ' ••• , nSN _

M 

L; ~ 0, i = N, N - 1, ... , N - M + 1 ; 

determines the definition region D of the function F(n sl , nS2 ' ••• , nSN _
M

)' which is the 
total Gibbs free energy of the system. The function F is obtained from the function 
F(nl' n2, ... , nN), in which the dependent variables are replaced with the right-hand 
sides of Eqs (2). 

The definition region D is a closed set, elements of set Dare (N - M)-tuples 
of mass amounts of the components SSI' SS2' ••• , SSN_M' The function F is continuous 
on D, inside D it has continuous partial derivatives of the first order; consequently, 
F assumes on D its highest and lowest value. As regards the minimum of the function 
F, there are two possibilities: 

I. The minimum of F is a local extreme. In this case, the numbers nsl , nS2 ' ••• , nSN _
M 

which minimize the function F, are the solution to the set of the N - M equations 

(3) 

and the remammg variables nSN ' I1SN _
I

' ••• , nSN _
M

+
I 

are determined from Eqs (2). 
The equations in set (3) are nonlinear and, before solving them, the dependent vari­
ables must be expressed through independent ones according to relations (2r~et (3) 
can be solved by a method of subsequent approximations and the first approximation 
can be an arbitrary point of set D. 

Another method for determination the equilibrium composition can be the 
method l

-
3

•
5 leading to a set of M + h linear equations, which is being solved 

several times until a required accuracy of the solution has been reached. The first 
approximation to the required solution must be selected in such a manner so that 
the mass balance conditions (1) may be satisfied. 

Example 

A system with the basic components ZI = Cu, Z2 = CI, Z3 = H, numbers b1 = 2, 
b2 = 2, b3 = 2, matrix A 
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T = 800 K; P = 0'1 MPa. Each of the first two components forms an individual 
solid phase, the latter two a gaseous phase. The mass balance equations 

=2 

can be used for expressing n2' 113 and 114 through 111 

n2 = 2 - n l , 

n3 = t11 1 , 

114 = 2 - n 1 • 

Thus, the total Gibbs free energy of the system is a function of one variable Ill' 

( ) 
4 - 2111 + 2 - 111 In --- . 
4 - III 

The definition region of P(nd is the inter~al 0 ;£ III ;£ 2. The dependence of the 
function P on III is illustrated in Fig. 1. The constants CI , C2 , C3 and C4 wc;:re calculat­
ed from tabulated data 15. It is obvious from this figure that P( Ill) reaches a minimum 
at III ~ 0·7. In this case the Boynton method 2 gave n l = 0·69923. 

II. P assumes its lowest value at the boundary of set D. This situation will arise 
with certainty if either F or P, which is identical, is a linear function. The function 
P is linear if and only if each of the phases considered contains only one component, 
i.e., h = N . A simple example is represented by a system containing one substance 
in two or generally three phases. 

Example 

A system formed by one substance in three phases at constant temperature and pres­
sure is described by one basic component ZI' which is the substance considered. 
The mass amount of this substance can be arbitrary, e.g., b l = 1, the matrix A 
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The component Sl is Zl in the gaseous phase, S2 is Zl in the liquid phase and S3 
is Z 1 in the solid phase. The mass balance condition is 

(4) 

The total Gibbs free energy of the system is 

Condition (4) can be employed for expressing, e.g., 113 through 111 and 112 

The function F is obtained by replacing 113 in F 

The inequality 113 ~ 0, which is equivalent with the inequality 1 ~ 111 + 112' must be 
satisfied. This inequality, together with the inequalities 111 ~ 0, 112 ~ 0, determines 
the definition region D of the function F with variables /11' 112' The region D in vari­
ables 111,112 is given by the area bounded by the axes and the straight line 111 + 112 = l. 

The function F is linear on D and it is also linear on sections which form the boun­
dary of set D. For locating the minimum of the function F at the boundary of set D, 
values of F at vertices of set D are of decisive importance. It holds 

F(l,O) = C l ; F(O, 1) = C2; F(O, 0) = C3 • 

Values of the constants c1 , C2, C3 depend on the substance, temperature and pressure. 
Let i, j, k be a suitable permutation of numbers 1,2, 3. Three cases are now possible .. 

1) cl #- c2 , cl #- c3 , C2 #- c3 ; C i = min (cl , C2 , C3)' According to the above discussed 
properties of the function F and to relation (4), the equilibrium composition is 
given by 

2) c i = cj , Ci #- Ck 

a) Ck < Ci . 

11k = 1, Ili = Il j = 0. 

b) Ck < C i . 

Ili = a, Ilj = 1 - a, 11k = ° 
where a is an arbitrary number from the interval ° ~ a ~ 1. 
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3) C I = c2 = c3 

F is constant on D, which means that 111' 112 is an arbitrary pair from set D, Il] is 
determined from (4). 

Another case in which F reaches its minimum at the boundary of set D is a system 
whose total Gibbs free energy has no local minimum, i.e., the case for which set 
(3) or the set of equations in the method 1.4 . 3 possesses no solution in the set D. Thus, 
in this case the minimum of F lies at the boundary of set D. 

Example 

A system with the basic components ZI = Ag, Z2 = Cu, Z3 = Cl, Z4 = Hand 
numbers b l = 2, b2 = 2, b3 = 4, b4 = 4. The matrix is 

A= 

i---- --
-84'5~ 

_~ _____ ,-----.1 
1 n, 2 

FIG. I 

The Dependence of the Function F on n 1 (Cu) 
in the System 2 CuCI + H2 at 800 K and 
0·1 MPa 

1 0 
0 1 

0 
0 
0 0 
0 0 
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FIG. 2 
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The Dependence of the Function F on n I (Ag) 
and n2(Cu) in the System 2 AgCI + 2 CuCI 
+ 2 H2 at 600 K and 0·1 MPa 
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T = 600 K; P = 0·1 MPa. Each of the first four components forms an individual 
solid phase, the last two components form a gaseous phase. 

The mass balance conditions 

=2 

=2 

n3 + n4 + ns = 4 

ns + 2n6 = 4 

can be used to express n3, n4., ns, n6 through nl and n2 as 

n3 = 2 - nl 

n4. = 2 - n 2 

ns = nl + n2 

n6 = 2 - t(nl + n2) 

Consequently, the total Gibbs free energy of the system is a function of two variables 

F(nl' n2) = 2(c3 + C4 + Cs) + nl(C I - C3 + Cs - -tC6) 

+ n2(C 2 - C4 + C~ - lC6) + (nl + n2) In (nl + n2) 

+ [2 - t(nl + tl2)] In [2 - tenl + n2)] 

- [2 + t(nl + n2)] In [2 + t(n l + n2)] . 

The definition region of the function F(nl' n2) is the square 0 ~ nl ~ 2, 0 ~ n2 ~ 2 
in the nl' n2 coordinate plane. The dependence of the function Fin nl is illustrated 
in Fig. 2 for several values of n2 . The constants C l , C2 • ••• , C6 were calculated from 
tabulated data lS

,16. It is obvious from this figure that F(nl' n2) reaches its minimun 
at nl = 2, n2 = O. Thus, the equilibrium composition is: 
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